Effects of the vascular disrupting agent ZD6126 on interstitial fluid pressure and cell survival in tumors.

نویسندگان

  • Julia V Skliarenko
  • Sarah Jane Lunt
  • Maggie L Gordon
  • Alex Vitkin
  • Michael Milosevic
  • Richard P Hill
چکیده

Interstitial fluid pressure (IFP) is elevated in tumors due to abnormal vasculature, lack of lymphatic drainage, and alterations in the tumor interstitium. ZD6126 is a tubulin-binding agent that selectively disrupts tumor vasculature resulting in tumor necrosis. This study examined the effect of ZD6126 on tumor IFP and the response of tumors with different IFP levels to ZD6126. Pretreatment IFP was measured using the wick-in-needle method in tumors (murine KHT-C and human CaSki) growing i.m. in the hind legs of mice. Mice were treated i.p. with a single dose of ZD6126 (100 or 200 mg/kg) and posttreatment IFP measurements were made. Blood flow imaging was conducted using Doppler optical coherence tomography, whereas oxygen partial pressure was measured using a fiber optic probe. Clonogenic assays were done to determine tumor cell survival. In KHT-C tumors, IFP dropped significantly at 1 hour posttreatment, returned to pretreatment values at 3 hours, and then declined to approximately 25% of the pretreatment values by 72 hours. In CaSki tumors, the IFP decreased progressively, beginning at 1 hour, to approximately 30% of pretreatment values by 72 hours. Clonogenic cell survival data indicated that ZD6126 was less effective in tumors with high IFP values (>25 mm Hg). Vascular disrupting agents, such as ZD6126, can affect IFP levels and initial IFP levels may predict tumor response to these agents. The higher cell survival in high IFP tumors may reflect greater microregional blood flow limitations in these tumors and reduced access of the drug to the target endothelial cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeting the tumor vasculature: enhancing antitumor efficacy through combination treatment with ZD6126 and ZD6474.

BACKGROUND The antitumor efficacy of combination therapy of the vascular disrupting agent ZD6126 and antiangiogenic agent ZD6474 was evaluated in the models of human colorectal (HT29) and ovarian carcinoma (OW1). MATERIALS AND METHODS HT29 and OW1 xenograft-bearing mice were treated with ZD6126 and ZD6474 either alone or in combination. ZD6126 therapy consisted of three doses of 100 mg/kg adm...

متن کامل

Evaluation of a 99mTc-tricine Vascular Disrupting Agent as an In-vivo Imaging in 4T1 Mouse Breast Tumor Model

Colchicine as a vascular disrupting agent creates microtubule destabilization whichinduces vessel blockage and consequently cell death. Accordingly, colchicines and itsanalogues radiolabeled with 99mTc may have potential for visualization of tumor. In this work,deacetylcolchicine a colchicine analogue was labeled with 99mTc via tricine as a coligandand characterized for its tumor targeting prop...

متن کامل

Evaluation of a 99mTc-tricine Vascular Disrupting Agent as an In-vivo Imaging in 4T1 Mouse Breast Tumor Model

Colchicine as a vascular disrupting agent creates microtubule destabilization whichinduces vessel blockage and consequently cell death. Accordingly, colchicines and itsanalogues radiolabeled with 99mTc may have potential for visualization of tumor. In this work,deacetylcolchicine a colchicine analogue was labeled with 99mTc via tricine as a coligandand characterized for its tumor targeting prop...

متن کامل

Antitumor effect of the vascular-disrupting agent ZD6126 in a murine renal cell carcinoma model.

ZD6126 is a vascular-disrupting agent that affects the endothelial tubulin cytoskeleton causing selective occlusion of tumor vasculature and extensive tumor cell necrosis. The present study evaluated the antitumor and antivascular activities of ZD6126 in the clinically relevant murine renal cell carcinoma (RENCA) model and also evaluated biological response to therapy using color Doppler imagin...

متن کامل

Antitumor activity of the novel vascular targeting agent ZD6126 in a panel of tumor models.

PURPOSE The purpose of this study was to examine the antitumor effects of the novel vascular targeting agent ZD6126 and to use histology, CD31 immunohistochemistry, and electron microscopy to gain an insight into the mechanism of action of this novel agent. EXPERIMENTAL DESIGN The antitumor effects of ZD6126 were examined using a range of solid tumor models: (a) ras-transformed mouse 3T3 fibr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 66 4  شماره 

صفحات  -

تاریخ انتشار 2006